
www.manaraa.com

  Design and Analysis of ACO‐algorithms 
for edge‐matching problems 

Carl Martin Dissing Söderlind

Kgs. Lyngby 2010 



www.manaraa.com

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DTU Informatics 
Department of Informatics and Mathematical Modelling 

Technical University of Denmark 
 
Building 321, DK-2800 Kgs. Lyngby, Denmark 
Phone +45 4525 3351, Fax +45 4588 2673 
reception@imm.dtu.dk 
www.imm.dtu.dk 



www.manaraa.com

Abstract 

 

Ant colony optimization algorithms are getting more and more accepted as 
optimization algorithms since the first ve  rsion was introduced in 1991. Back 
then it did not perform very well but several improvements changed that and 
the ACO algorithms are now seen as very well performing algorithms on a 
number of problems. 

The edge matching puzzle is an old but interesting problem which has gained 
extra attention by mathematicians by the Eternity II release in 2007 with a 
first price of $2.000.000 for the first to solve a very hard edge matching puz-
zle. 

The purpose of this thesis is to try to create an ACO algorithm to work on 
edge matching puzzles. 

The problem will be studied in order to see what makes one puzzle harder to 
solve than another. 
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CHAPTER   1 

1 Introduction 

1.1 Thesis statement 

The edge matching puzzle is about placing pieces on a board in a right way. 
The puzzle is solved when every piece is placed and every side of the pieces 
matches the neighboring pieces’ sides. 

This thesis is about finding as good solutions as possible to the edge matching 
puzzle problem with cleverly designed algorithms and without the use of ex-
haustive search. Previously contributions of finding solutions to the problem 
will be looked into to gain knowledge. 

The first step is to analyze the combinatorial structure of the edge matching 
puzzles. Find out how much it affects the complexity of the puzzle depending 
on the board size, how many colors the problem consists of and other va-
riables. 

The next step is to implement the algorithm. It should be based on the ant 
colony optimization algorithm and should take use of the observations in the 
analysis to get a fine tuned algorithm for the problem. This will in ACO be 
used in the computation of the desirability to choose one piece over the others. 

At first a small problem with a few colors and a small board size will be con-
structed to determine if the tunings are working or not. When usable tunings 
has been obtained more complex problems can be tried solved. 

The main idea for this project came from the Eternity II puzzle game (1) 
which is an edge matching puzzle problem proven to be so complex so that no 
solution will be found in reasonable time. 
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1.2 Motivation 

If good solutions can be found to the edge matching problem, using a special-
ly designed ant colony optimization algorithm, the results and experience can 
often be used in other similar projects. If one idea works on one specific prob-
lem it is very likely it will work on others as well. 

Since ACO is a fairly new group of algorithms there are still plenty of prob-
lems to try out which is why it would be interesting to use it on the edge 
matching puzzle. If good results are gained the ACO will add another problem 
to its success list, proving once again that it belongs in the top of optimization 
algorithms. 

1.3 Outline of the thesis 

This thesis is divided into chapters that start by giving a general knowledge of 
the background of  problems and how they can be solved with simple 
optimization algorithms as well as with ACO algorithms in chapter 2. 
Previous solving methods to the edge matching puzzle are also mentioned in 
this chapter. 

From here the focus goes to the theory of the edge matching puzzle and of the 
ACO algorithms in chapter 3. It can be seen what separates a hard problem 
from a weak problem dealing with the edge matching puzzle and for the ACO 
algorithms the different techniques are reviewed. 

In chapter 4 the suggestion for an ACO algorithm for the edge matching puz-
zle problem is shown. Some simple algorithms for the problem are reviewed 
first before going to the actual ACO algorithm. 

Chapter 5 explains how the algorithms from chapter 4 are implemented. 

In chapter 6 the results of the algorithms are shown and an evaluation of each 
of the results is given. 

Chapter 7 is the conclusion of the thesis which will evaluate the whole 
process as well as give suggestions for improvements. 
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CHAPTER   2 

2 Background 

In this chapter previous work on different subjects will be discussed. In the 
first subsection examples of how simple optimization algorithms work on 
selected problems are looked into. The will provide knowledge of how algo-
rithms are applied to problems that can be used later in the creation of the 
ACO algorithm for the edge matching puzzle. In the next subsection different 
strategies of how to obtain acceptable solutions to the edge matching puzzle is 
studied. This will give an understanding of the problem and its limitations. 
The final subsection will have examples of how ant colony optimization algo-
rithms are applied to similar problems. 

2.1 Simple algorithms on   problems 

-complete problems are problems that cannot be solved in polynomial 
time. The definition can be seen in (2).This means that there is no efficient 
way to find a solution to the problem. To solve these problems, or at least to 
reach an acceptable solution, there are different approaches spread over a 
number of variants of algorithms. A number of problems will be reviewed 
before the solving techniques are applied to them. 

2.1.1 The problems 

The first problem mentioned is probably the most widely used as an example 
known as the travelling salesman (TSP). A number of cities all have to be 
visited by a salesman. The salesman can go from any one city to another until 
all cities have been visited exactly once. The total distance is all the distances 
between the cities added together. The problem is to find the shortest path, or 
a path of acceptable length, for the salesman to travel. 

The next problem is the set covering problem (SCP) which is about choosing 
a minimum number of sets, all containing a number of elements, while cover-
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ing all the elements. The different sets can hold any number of elements and 
the elements can be present in more than one set. 

The last problem is the quadratic assignment problem (QAP) where a set of 
facilities must be assigned to a set of locations. With given flows between the 
facilities and given distances between the locations the problem lies in placing 
the facilities on the locations to get a high flow between the facilities and at 
the same time a short distance between the locations. It is the sum of the 
product of these parameters that must be minimized. This problem can be 
seen as an expanded version of TSP since it is about minimizing distance but 
is at the same time known to be one of the hardest problems to solve because 
of the extra facility parameter added to the problem. 

2.1.2 Backtrack 

If you want to be sure that you have the optimal solution to problems, where 
you do not know exactly what the best result is, one way is to use a backtrack-
ing algorithm. This algorithm is very time demanding and is in general only 
usable with small instances of a problem to find a solution. The backtracking 
algorithm can be found in almost all literature dealing with optimization prob-
lems. In short the algorithm works by calling a recursive function which 
creates all possible states from the state it was called from. Again for each of 
these states the recursive function is called. Each time a state has reaches a 
point where it no longer can create new states it backtracks to the previous 
state and rejects that state as a solution. When the algorithm is finished all the 
solutions to the problem has been returned. 

The Travelling Salesman problem is one problem where the algorithm can be 
applied if the number of cities is not too high. This is dependent on the effi-
ciency of the computer running the algorithm and how long time you are will-
ing to let it work. Since The Travelling Salesman problem is about finding the 
shortest cycle in a graph it does not matter at which vertex it starts. The back-
tracking algorithm is initialized with the construction graph and a random 
vertex. The algorithm calls the recursive method with the initialized parame-
ters and the method goes though all the edges of the vertex to find the neigh-
boring vertices. For each of these vertices the recursive method is called once 
again. For each of the instances there is kept track of which vertices that has 
already been visited. When the algorithm is complete all possible routes has 
been found and from here it should be straight forward to locate the shortest 
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route. Since the shortest route length is not known beforehand all possible 
solutions have to be found before determining which is shortest. 

With the set covering problem all possible combinations also have to be tried 
before the smallest set can be determined. The algorithm adds one set after 
another and at all time makes sure that the set covers at least one new element 
which has not yet been covered. When all elements are covered the list of 
selected sets is a solution. The solution is saved and the algorithm backtracks 
from the last state to add different sets until all possible combinations are tried 
out. 

The quadratic assignment problem is as mentioned an extension of TSP so the 
obvious way to backtrack would be in the same manner. The difference is that 
for each location there is also a facility that must be placed. The search area 
increases exponentially for each location added to the problem comparing to 
the TSP. So much smaller instances can be handled by the backtracking algo-
rithm in comparison to a similar TSP problem. 

2.1.3 Greedy 

An algorithm that is fast but for a lot of problems does not return a very good 
solution is the greedy algorithm. As the name suggests it will always choose 
the option that gives the best result in the current state. The basic greedy algo-
rithm will always return the same result, because the best solution in the mo-
ment will never change no matter how many times the algorithm is run. Cus-
tom made greedy algorithms can be implemented to find alternative solutions 
depending on parameters such as a starting point. 

For the Travelling Salesman problem the greedy algorithm will for each step 
choose the edge with the shortest distance. To guarantee that a full cycle, 
where all vertices have been visited, edges will be removed each time an edge 
has been chosen. There is no guarantee that the removed edges should not be 
part of the solution which is why the solution given by this algorithm cannot 
be guaranteed to be the best. 

For the set covering problem the greedy algorithm would simply continue to 
select the set that has the most elements in it that has not already been cov-
ered, until all elements are covered. This will definitely not guarantee the best 
result. When choosing the set which covers most elements there are no guar-
antee that the rest of the elements will be in separate sets, and by that creating 
a bad solution. 
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The quadratic assignment problem would for each step choose the product 
with the highest value. Just like the TSP a lot of edges would be deleted, 
where one of them might be required in the best solution. 

2.1.4 Local Search 

The local search algorithm is an algorithm that from one solution tries to find 
new solutions by making simple mutations. A mutation is a random move that 
makes one difference in the solution. This could be swapping two edges in a 
graph such that the outgoing vertex of edge one now point to the ingoing ver-
tex of edge two and vice-versa. When the mutation is done the new solution is 
checked to see if it is better than the old. If this is the case the new solution is 
now the solution from where the local search is run, otherwise the old solution 
remains. At sometime during the local search the solution will most likely 
reach a local optimum meaning that no matter where the mutation is made no 
better solution is found, and this is even though the best solution has not been 
found yet. To get out of the local optimum more mutations have to be made 
before checking the solution. When making more mutations the algorithm is 
often called k-opt where k is the number of mutation made before the check. 
In (3) they come up with a suggestion for choosing the k value according to a 
Poisson distribution with 1 since all possible mutations of a solution have 
the same probability to get chosen. This allows the k to be variable but at the 
same time tries to minimize the number of mutations since the probability 
curve falls the higher the k gets. 

Using the local search on the travelling salesman problem the mutation works 
as in the explanation by swapping two edges which is actually a 2-opt since 
two edges are changed. 3-opt is another version where, as the name suggests, 
three edges are swapped, but here more connections can be made making the 
algorithm work more but probably getting better results and possible better to 
avoid local optimum. 

For the set covering problem a mutation would be to remove a set covering 
some element and choose another set that covers the element. After that re-
dundant sets should be removed if present. This means sets that are covering 
elements where all of them already been covered by other sets. 

The quadratic assignment problem is again not that different from the TSP. It 
would work like it does for TSP but it would have a lot more edges to choose 
from making it harder to solve.  
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2.2 Previous work with edge matching puzzles 

Pierre Schuas and Yves Deville came up with very well working algorithm to 
get a good result of the Eternity II puzzle (4). Their algorithm is basically a 
hybrid of to solving methods. The first method is using constraint program-
ming. The constraints of a problem are explained in chapter 3.1. A number of 
variables are defined representing the pieces and the possible placements of 
them. A solver tries to assign the variables taking the constraints into account. 
The solver works like a custom made backtracking algorithm that takes the 
constraints into account when placing the pieces. The conclusion made by 
Schaus and Deville is that the eternity II puzzle is too hard for constraint pro-
gramming if all the constraints should be met. They come up with the idea to 
remove some of the constraints so that some non-matching edges are allowed. 
The positions for the pieces with non-matching edges are not chosen random-
ly. By choosing, as they put it themselves, only some of the black positions on 
a chess board they are guaranteed not to have two positions being adjacent to 
each other. This is important in the next method they will apply. The non-
matching pieces and their positions will be used in an assignment algorithm to 
find the best matches for the pieces. The assignment algorithm maximizes the 
total matches by finding the best assignment of the pieces. Several algorithms 
exist for this where the Hungarian algorithm is one of the most used (5; 6) As 
their best result they matched 458 of 480 on the Eternity II puzzle which is 
one of the best known results made by an algorithm. 

As expected the constraint programming in itself does not provide good solu-
tions to such a big problem as the Eternity II problem, but on smaller in-
stances it can be used and it is very well suited to find all solutions to a prob-
lem. Using the assignment algorithm is actually very clever since perfect as-
signment can be found very fast when choosing the pieces the way they do. 
Looking at their solution one must conclude that their algorithm is very effec-
tive. 

Jorge Muñoz, German Gutierrez, and Araceli Sanchis have made and algo-
rithm based on local search to try out on the Eternity II puzzle(7). Here there 
are two different mutations. One is where two randomly pieces are exchanged 
and the other where a randomly chosen piece is rotated. They claim that the 
number of mutations before the check should be between 1 and 10. This 
sounds very likely since it corresponds to the Poisson distribution as ex-
plained in 2.1.4. The result they get with this algorithm is not as impressive as 
the previous with only 366/480 at most. 
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2.3 Previous work with ACO on   problems 

Ant colony optimization algorithms have been applied to several problems 
and new variants of ACO are still being tested on some of the earliest prob-
lems applied to ACO, because they are the most tested upon. The most tested 
problems are the ones already discussed in the previous subchapters. The de-
scription of the three main ACO algorithms can be found in chapter 3.2. 

When applying ACO algorithms to the travelling salesman problem a number 
of ants are placed randomly on different cities ant from here they walk the 
edges until all cities have been visited. According to a decision policy the 
edges are chosen from two aspects: The desirability to choose an edge is giv-
en by how much it has been travelled before, and a heuristic function of how 
good the choice is. For the TSP it is preferred to find the shortest path so the 
heuristic function should return a higher value for a short edge than a long. 
This is done very simple by dividing one with the length of the edge. More 
formal the function will be 1 ,⁄ , where ,  is the distance between 
vertex i and j. In the decision policy it is possible to control the influence of 
the desirability and the heuristics with some parameters. 

There are a lot of different ACO algorithms that have been applied to the TSP 
and according to (8) the ant system variant, which was the first ACO algo-
rithm, failed to find good solutions when the number cities rise above 30. 
With the introduction of ant colony system this algorithm was able to compete 
with other optimization algorithms. This is also done in (8) and it is made 
clear that ACS is very well suited to solve TSP problems when looking at 
their test results. 

In (9) a comparison of different ACO for the set covering problem has been 
tested. The problem can be defined as a matrix with the columns representing 
the different sets where the elements are the rows. If an element is in a set a 1 
is on that place in the matrix, otherwise a 0. By choosing columns the rows 
with a one are marked as covered. When a number of columns and all the 
rows have been covered a solution is found. For ACO the pheromone value is 
placed on the columns and is the desirability to choose that set. The heuristic 
function is how many uncovered elements a set contain. 

The algorithm starts up with an empty solution and ads set after set using the 
pheromone and the heuristic function to decide what set to choose next. Also 
for this problem the ACS has been found to create the best solutions. 
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3 Theory 

In this chapter the two main subjects of the thesis, the edge matching puzzle 
and the ant colony optimization algorithms, are reviewed. This is important 
knowledge which is used in the next chapter when the ACO algorithm is ap-
plied to the edge matching puzzle. 

3.1 Edge matching puzzle 

The Edge Matching Puzzle is an optimization problem proven to be NP-
complete by Erik D. Demaine & Martin L. Demaine(10). Because of this it is 
interesting to analyze the problem in order to determine what separates a puz-
zle that is easy to solve to one being very hard to solve. The hardness of a 
problem is determined by the probability to find a solution. Even though a 
problem has very few solutions it is not necessarily a harder problem than one 
that has a lot of solutions. 

This section will focus on how the puzzle is built up, having a number of dif-
ferent constraints and properties, and how much each constraint and property 
of the puzzle contributes to the hardness of the problem. 

3.1.1 Matching sides 

A constraint that is present in all edge matching puzzles is the condition say-
ing that the touching sides of two adjacent pieces must have the same value 
for all pieces to reveal a complete solution. The value is often a color but it 
can in general be anything from letters to images as long as they are compara-
ble. This constraint can in itself be split into two constraints, with signed and 
unsigned matching sides. The unsigned case is where the value of the touch-
ing sides of two adjacent pieces is exactly the same. In the signed case a new 
property comes in play which states that any sides must be paired up with its 
predefined mate. In a puzzle where the values are colors two mates could be a 
light and a dark version of the same color. In the version of a puzzle with 
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letters the mates could be a capital and a noncapital letter. Signed sides tend to 
create less possible solutions to the puzzle but at the same time make it easier 
to solve via a backtracking method since less matches must be tried out. To 
outline this imagine n pieces all having one side value in common. In the un-
signed version all combinations must be tried out, which implies that all piec-
es can be matched together. The following equation returns in how many dif-
ferent ways n pieces with equal side values can be matched. 

   
1 ∙

2
 

The equation creates all combinations of matches of the pieces and removes 
double pairs by dividing by two. 

In the signed version where n sides match with m mating sides the equation is 
very simple. 

    ∙  

Since the n sides will never match each other there is no need to contract one 
and divide by two, as in the above equation, to find all the matches. 

 

Total Pieces Total combinations 
(unsigned) 

Total combinations 
(signed) case 1 (n,m) 

Total combinations 
(signed) case 2 (n,m) 

2 1 (1,1) 1 - 
4 6 (2,2) 4 (1,3) 3 
6 18 (3,3) 9 (2,4) 8 
10 45 (5,5) 25 (8,2) 16 
11 55 (5,6) 30 (3,8) 24 

 
Table 1 – Piece matches – signed/unsigned 

In Table 1 it is visualized how the unsigned pieces create more matches than 
the signed. The signed pieces can be split into several cases and in the table is 
shown two different splits. In case 1 the pieces are as close as possible to an 
even split which gives the most combinations. In case 2 a random split is 
made just to show that the total combinations always will be less than an even 
split. The hardness of the problem is not directly affected whether the sides 
are signed or not. By signing pieces you just get an extra constraint which 
either leads to an easier solvable problem or harder since it actually is more 
dependent on the size of the board which can be seen in a later subsection. 
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The total number of sides that must match before the puzzle is solved com-
pletely is given by the formula 

  ∙ 1 ∙ 1  

This is called the maximum score and is used to compare a found result to see 
if it is a completely solved puzzle. 

3.1.2 Border 

A constraint that is optional for the puzzle is whether or not the border pieces 
of the puzzle should be of a special value. This means that for the puzzle to be 
correctly assembled the entire puzzle should have a common border value. 

 

Figure 1 – A puzzle with and without border 

A puzzle with a fixed border value decreases the number of solutions notably 
comparing to a puzzle without the border value. It is pretty obvious since in a 
puzzle with no border constraint, all pieces can be matched with the border. 
As long as all the pieces not in the border match one another it does not matter 
how the border pieces are placed. 

3.1.3 Board size 

The board size is the property with the most influence of the total combina-
tions that can be made. The bigger the board get the more combinations can 
be assembled with the pieces. With a board of size ∙  there are ∙ ! 
possible ways to place the pieces on the board if the pieces do not rotate and 
without the border constraint. The rotation of the pieces is the property that 
has the most influence of the number of combinations. In a ∙  puzzle 
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where the pieces cannot be moved around but only rotated, exponentially 
many combinations can be made. Each time one piece rotates the rest of the 
∙ 1 pieces can also rotated in four different ways. The puzzle will have 

4 ∙  combinations just by rotating. By combining the move and rotation of 
the pieces the final equation will be 

  ∙ ! ∙ 4 ∙  

Taking the border constraint into account there will be a lot less combinations. 
The corner pieces can only be placed in four different locations and can only 
be in one rotation giving 4! combinations. The border pieces can only be 
placed in 2 ∙ 2 2 ∙ 2 different locations and can also only be in 
one rotation this gives 2 ∙ 2 2 ∙ 2 ! combinations. The final 
equation will be 

    

4! ∙ 2 ∙ 2 2 ∙ 2 ! ∙ 2 ∙ 2 !   ∙ 4 ∙  

Using this formula it can be determined that two puzzles of the same size, 
∙ ∙  , gives the most total combinations the more equal n and m 

are. So to create the hardest board it should be as close to square as possible. 

3.1.4 Number of colors 

As a simplification the side values of the pieces will from now on be referred 
to as colors. How the number of colors contributes to hardness of the problem 
is, like signed and unsigned pieces, highly dependent on the size of the board 
and how evenly the colors are distributed. It is easy to see that with few col-
ors, distributed on a number of pieces, more matches between the individual 
colors can be done than with many colors, distributed over the same amount 
of pieces. With a few colors there is a higher probability that more solutions 
exists than with a lot of colors. Nevertheless it is not necessarily easier to find 
one out of many solutions to a problem than it is to find a solution to a prob-
lem that only has that single solution.  
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Figure 2 – 4x4 board with 24 colors 

Figure 2 shows a board of size 4 x 4 with 24 different colors and a border. It is 
easy to see that only one solution exists (unless the whole board is rotated 
which will create four solutions). Even though there is only one solution it is 
extremely easy to find it. Since every color is only found on two pieces those 
two have to be placed next to each other. So no matter what piece is chosen as 
a start piece, the rest of the pieces can be placed trivially. 

Having unique pieces in a puzzle is preferable if you don’t want to see redun-
dant solutions. A formula to create unique pieces from a number of colors can 
be found in (11) 

   
2 ∙

4
 

Here c is the number of colors. It can be seen that the number of unique pieces 
rises quite fast the more colors are added to the puzzle. 

In a puzzle with border the colors in the border pieces that are adjacent to 
other border pieces will never pair up with the colors of the interior pieces. 
See Figure 3 for clarification. So even though the same color exists in both the 
border pieces and the interior it can be seen as two different colors that will 
never pair up. 

 

Figure 3 – Illegal placement of border and interior piece 
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If there are some colors in a puzzle that occurs less than others it is wise to 
combine these before the other colors since they create less permutations. This 
concludes that en even distribution of the colors maximizes the hardness of 
the problem. The even distribution is of cause for both the border colors and 
the interior colors.  

The interesting question is to locate the ratio of the board size versus the 
number of colors which creates the hardest puzzles. In (12) a formula for this 
is listed when figuring out the hardness of the Eternity II puzzle. The formula 
is trying to prove that there is only one expected solution to the problem by 
finding the number of colors needed for this to be true. The only information 
the formula uses is the size of the board and from this determines the number 
of colors. Here is how the formula is written in (12). 

Let M = Interior edge types. 
Let B = Border edge types 

On average there are 2 joins per interior piece. 

Interior solutions = 195! ∙ 4 ∙ 1 

195! ∙ 4 1 

 195! ∙ 4  
 16.85 

Interior edge types = 17 

On average there is 1 border edge type join per border piece. 
On average there is 0.5 interior edge type joins per border piece. 

Border solutions = 56! ∙ 4!
∙ . ∙ 1 

56! ∙ 4!
∙ 17

1 

56! ∙ 4!
17

 

4.97 

Border edge types = 5 

This formula is written for the Eternity II puzzle but can easily be rewritten to 
fit with any problem. Here is an explanation of how the formula should be 
interpreted. The statements that there are 2 joins per interior piece, 1 border 
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edge type join per border piece and 0.5 interior edge type joins per border 
piece can be visualized in Figure 4 by respectively green, blue and orange 
arrows. 

 

Figure 4 – Joins of pieces 

In the first equation, to calculate the number of colors for the interior pieces, 
the numerator is all the possible combinations of the interior pieces. This is 
similar to the equation seen in the board size section. The reason why it is 195 
when it should be 196 is because in the Eternity II puzzle one position of a 
piece is known beforehand. The denominator is the yet unknown number of 
colors spread out on the 196 pieces times 2 for the joins. The general equation 
will be 

2 ∙ 2 ! ∙ 4 ∙ ∙ ∙  

The second equation, to calculate the number of colors for the border pieces, 
the same procedure is used as the first equation. The general equation will be 

2 2 2 2 ! ∙ 4!
. ∙  

 

Using this formula to get the number of colors and distributing them evenly 
will create some hard puzzles to solve. 

3.2 ACO 

Ant colony optimization algorithms where first introduced in 1991 by Dorigo 
(13). He suggested the so called Ant System algorithm which is the simplest 
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of its kind. Like all versions of ant colony optimization algorithms this algo-
rithm was based on the behavior of real world ants that are laying a trail of 
pheromone to find a shortest path to a source of food. Whenever an ant travels 
from one point to another it deposits an amount of pheromone on the trail 
causing other ants to prefer this route. A number of ants choose different 
routes, some of them overlapping, causing a stronger pheromone value on 
those parts of the route. The pheromone on the routes evaporates over time 
causing the shortest route to be used more frequently and at last leaving the 
longest route unused. 

ACO algorithms add additional features extending the real world ants proper-
ties. Any heuristic information in a problem is known and used when deciding 
the next move. The algorithm can also keep track of states the ants have al-
ready visited to prevent them from going twice. 

The algorithms are intended to work on graph problems and in most cases a 
problem can be seen as such. In some cases it is fairly easy to make the con-
version where in other cases the conversion is hard to find. A problem can 
even be converted in several ways and it is up to the designer to pinpoint the 
pros and cons of each to decide which one is best. 

The algorithms works by assigning a number of ants to random vertices in the 
problem graph. From here each ant has to decide which vertex to move on to 
next. The decision policy is one of the things that vary in between the differ-
ent algorithms but in general the decision is based on the heuristic information 
combined with the pheromone value from previous ant tours. A tour is when 
the individual ants have travelled through the graph and some end criteria is 
fulfilled. This is at the same time a solution to the problem which may or may 
not be accepted based on some criteria. When the ants have ended their tour it 
is time to update the pheromone value on the edges. This also differs through-
out the algorithms but in basic the pheromone on the edges will be updated in 
two steps. First the pheromone will evaporate on all edges with pheromone on 
them. Then the travelled edges will gain some pheromone according to how 
good the solution was. 

According to (14) three ACO algorithms have shown to be the most success-
ful ones and the details of each will be listed here. 
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3.2.1 Ant system (AS) 

As mentioned, Ant System was the first ACO algorithm introduced by Dorigo 
in 1991, which became the inspiration for later algorithms. At initialization of 
the algorithm a predefined number of ants are placed on random vertices in 
the graph. Each ant moves to a neighboring vertex decided by the decision 
policy defined in this way: 

p ,

, ,

∑ , ,∈

,   ∈

0,

 

 p ,  is the probability for an ant in vertex i to move to vertex j. 

 ,  is the pheromone already deposited on the edge between vertex i 

and j also known as the desirability. 

 ,  is the heuristic information on the edge between vertex i and j. 

This is usually some static information that can be computed in the in-
itialization of the algorithm but in some cases it is computed during 
runtime. 

  is a list containing the allowed vertices that can be visited from 
vertex i. This list is dependent on the specific problem that is tried 
solved. If a vertex is not in the list the probability of choosing that is 
zero. 

  and  are the parameters for controlling the influence of the phero-
mone and the desirability. Setting these values is up to the designer 
and has a huge impact on the solution. It is often by systematic testing 
the optimal values are found. 

 

When all the ants have completed their tours it is time to update the phero-
mone values on the edges. First the value will get decreased and then for all 
the edges that were traversed by the ants will gain a pheromone value accord-
ing to how good a solution the individual ant created. The pheromone update 
equation looks like this and will apply to all edges in the construction graph: 
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, 1 , Δ ,  

  is the evaporation rate which lowers the existing pheromone value 
on the edge. 

  is the total number of ants in the system. 

 Δ ,  is the pheromone deposited by the k-th ant if it has visited the 

edge between vertex i and j. If so the amount deposited is determined 
of how good the total solution of the k-th ant’s tour is. This is done 
for all m ants in the system. 

At initialization the value  needs to be set or the algorithm will not work. 
For Ant System it is often set to a very low value so that it does not influence 
the choice that much but still has a chance to be chosen. 

The Ant System provided a new technique for optimizing solutions to hard 
computational problems but was still not able to compete against similar algo-
rithms as stated in (15). This leads to the successor of Ant System. 

3.2.2 Ant colony system (ACS) 

Ant Colony System is the first improved ACO algorithm introduced in 1997 
by Dorigo and Gambardella (13). The algorithm has not changed a lot from 
Ant System but has nevertheless a great impact on the algorithm. The decision 
policy has changed into a pseudo-random proportional rule, making the deci-
sion dependant of a random variable, q, uniformly distributed over [0…1] 
deciding whether an ant should act greedy and follow the edge that has the 
best value or if it should use the decision policy from AS. 

s
argmax

∈
, ∙ , ,  

    ,
 

 

 is a parameter set by the designer and the higher this gets the greater is the 
probability that the greedy choice is taken. Since this decision favors exploita-
tion of a known good solution it is needed to decrease some of the pheromone 
on the edges of the good solutions so that unexplored edges will be travelled 
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to find new solutions. This is done with the so called local pheromone update. 
It updates the last travelled edges by all the ants with the equation: 

, 1 ,  

 is the pheromone decay coefficient that in principle provides the same as 
the evaporation rate by lowering the pheromone value on the edge.  is the 
initial pheromone value as in Ant System. This equation diversifies the solu-
tions found by the individual ants in a single tour. 

As in Ant System a global pheromone update is performed when all ants have 
completed their tours but in Ant Colony System only the ant that created the 
best solution gets to update the edges. The equation is then applied only to 
these edges: 

, 1 , Δ ,  

Δ ,  is a value defined by how good the solution to the problem is. The 
designer can either choose to use the best known solution to create this value 
or the recent solution found by the best ant. 
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3.2.3 Max‐Min ant system ( AS) 

The Max-Min ant system is another improvement to the original algorithm 
proposed in 2000 by Stützle and Hoos (13). As with the ant colony system it 
is only the only which created the best solution that gets to update the edges. 
This is done in the same way as in ant colony system but as the name of the 
algorithm suggests there are upper and lower bounds of the pheromone val-
ues. Two constants representing theses values are set and if the pheromone 
values either increases or decreases one of these values it is set to be equal to 
it.  

  ,     ,  

  ,     ,  

The minimum value is often experimentally chosen but a good approximation 
is to use  from ant system. The maximum value is usually set using the op-
timal solution of a tour. If the optimal solution is not known beforehand, it 
can be set to a best-tour solution. 

The decision policy is directly taken from ant system. 

 



www.manaraa.com

CHAPTER   4 

4 An ACO algorithm for the Edge 
Matching Puzzle 

Now that the Edge Matching Puzzle and the principles behind ACO algo-
rithms have been covered it is time to look into the creation of an algorithm to 
optimize the Edge Matching Puzzle problem. 

4.1 Introductory algorithms 

Since an Edge Matching Puzzle can be constructed in many difficulty levels 
the first algorithm that comes to mind, dealing with a rather easy problem, is 
the backtracking algorithm. Problems of smaller size will be solved quickly 
with this method but since the search area grows exponentially as the board 
size grows this method will at some point not be usable. The backtracking 
algorithm is able to find all solutions to a problem and will do so given 
enough time. In smaller problems this can give an idea of how many solutions 
a problem can have given different properties like the size of the board, the 
number of colors and the distribution of these. The algorithm will be very 
simple by going through all the spaces on the board, trying out all pieces in all 
combinations. It is easy to see how the search area will grow just by adding an 
extra row to a board. 

The next algorithm which is interesting to apply to the Edge Matching Puzzle 
problem is the Greedy algorithm. Each time a piece must be placed the one 
that fits in a position that will maximize the partial score is chosen. This is 
done until all pieces are placed. Using this approach an optimal solution is not 
guaranteed even if you try all permutations of the piece list. It is consistent 
with the general definition that an optimal solution of some problems cannot 
always be found with a greedy algorithm. 

Another way to create a custom greedy algorithm is to place them row or col-
umn wise and them pick the best piece available each time a piece needs to be 
placed. The board will most likely have a lot of pieces that match on one side 
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and less pieces that match on the other side since the selection of available 
pieces is cut down each time a piece is placed. This algorithm will though 
eventually give an optimal solution if all permutations of the order of the 
piece list are tried. Eventually a list will come up where the first piece in the 
list is the perfect match for each position. 

The last algorithm of interest is the local search algorithm. The idea is actually 
the same as in(7) where the mutation operators should be either a swap be-
tween two pieces or rotation of one piece. The algorithm should also be k-opt 
where the k is chosen from a Poisson distribution. At initialization of the 
board is should be run once with the greedy algorithm because local search 
algorithms usually perform a lot better when working from a solution which is 
somewhat good. 

4.2 The ACO for the Edge Matching Puzzle 

Each version of the ant colony optimization algorithms all takes a problem 
represented as a graph as an input. With the edge matching puzzle problem it 
is of great influence how this graph is made. One way to make it is to create a 
vertex for each position on the board and a vertex for each piece. In the case 
where the problem does not requires a border all pieces can fit in all positions 
on the board. This means that there will be an edge from all piece vertices to 
all position vertices. Since all pieces can be rotated in four positions each 
piece vertex is split into four and they all get an edge to each of the positions. 
A board with  positions and therefore also  pieces will have a graph with 
4 ∙  edges. In a problem with borders the amount of edges will be a little 
less but nothing that has a big influence with a large board. Depending on the 
algorithm the visited edges will gain an amount of pheromone when a solu-
tion has been obtained. The amount of pheromone on each edge will be the 
desirability to choose a piece in a specific rotated state and place it on the 
position it points to. In a puzzle with borders it is a requirement that border 
pieces only can be placed in border positions and only in one rotated state and 
for the corner pieces the same applies. The interior pieces cannot be placed in 
the border but they can be rotated in all four states. See Figure 5 
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Figure 5 – ACO version 1 graph representation 

Another way to construct the graph is by making edges between all sides of 
all pieces, except the sides of the individual pieces. All sides of a piece will 
have a unique vertex pointing to the other pieces vertices. In this way it is no 
longer the position of a piece on the board that matters but instead the neigh-
bors of the individual pieces. A board with  pieces will consist of ∙ 4 ver-
tices and ∙ 1 ∙ 4 edges where all vertices are connected, except the 
ones that belong to the same piece. In a problem with borders there are two 
types of vertices; the ones in the border which only has edges to other vertices 
lying in the border, and the ones in the inside part of the board. The corner 
pieces will only have two vertices that are border specific. The corner pieces 
also have two border specific vertices but also one vertex which is inside spe-
cific. The pheromone on the edges will in this case be the desirability to 
choose a pair of pieces that has been adjacent to each other before. See Figure 
6. It has been simplified a lot since a whole board where all sides of all pieces 
are connected with edges would create very confusing image. 
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Figure 6 – ACO version 2 graph representation 

The algorithm needs knowledge about the heuristic function in order to 
choose a piece to be placed on the board. This can be determined quite easy. 
When the algorithm wants the heuristics of a piece in a certain position it 
needs to looks at the four adjacent positions. If some of them have not been 
filled out with a piece yet they are skipped otherwise the value of the side 
pointing towards that certain position is noted. The total number of adjacent 
positions that have pieces placed is noted. For each available piece, in all rota-
tion states, the number of sides that match is stored as   . This is in the 
range [0…4] but can never be higher than four. The heuristic function will 
then return the value 

h 1 

The reason for adding one is to avoid that h will be zero and mess up the deci-
sion policy. This value must be computed during runtime of the algorithm 
since it is not known which pieces are placed at what position at initialization. 

Where version 1 of the algorithm gets its pheromone value directly from the 
edge that connects a piece to a position, version 2 has to get the pheromone 
from several edges. It must get it from the edge of each pieces which is adja-
cent to the position and then combine them to find a common value. 

When it is time to update the edges the pheromone that should be added is 
simply the number of pieces in the entire puzzle that match 

The performance of each ant colony optimization algorithm is easiest to de-
cide by experimentation. One can though argue that the Ant System is out-
dated and instead go directly to the question of which of Ant Colony System 
and Max-Min Ant System that performs best. Even though they work in dif-
ferent ways, they use the same pheromone update function and the same heu-
ristic value. 

At initialization of the two algorithms a number of variables have to be set. 
For both of them the influence of desirability versus heuristics,  and , as 
well as the number of ants and the evaporation rate of the pheromone are im-
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portant variables which cannot be determined right away but must be found 
trough experimentation. 

When placing the pieces the order of this can be an important issue. The 
straight forward way is to start in a corner and placing them either row or 
column wise. For the first piece placed the heuristic information returns zero 
since no pieces are adjacent. The next piece gets the heuristic information 
with information from the previous piece and later on the heuristic informa-
tion is fetched with information from two adjacent pieces. Inserting pieces this 
way can faultily favor some of the early inserted pieces because of the lack of 
heuristic information. This may be prevented if the number of ants is high 
enough since the probability of them choosing different start pieces is then 
higher. 

Another way to insert the pieces is by doing it completely random. Each time 
a piece is inserted a random position of the board is chosen and from here the 
heuristic information and the desirability to choose a piece is fetched. This 
way can though create bad solutions since it does not use the heuristic infor-
mation very well while putting the first pieces down and then when it is used 
the best fit pieces might already be used. A mix of the two piece insertion 
methods is to choose a random position and place the first piece. Then from 
this position randomly choose one of the four adjacent positions and do this 
again until all positions has been filled. In this way the heuristic information 
is used while placing all pieces except the first. This approach will be tried out 
on the greedy algorithm first to see if good results can be found. 
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5 Implementation 

The algorithms implemented are the ones from the previous chapter and they 
are all implemented in C#. The whole thing is build up with a graphical user 
interface to create puzzles and then choose an algorithm to run on the prob-
lem. 

 

Figure 7 – The application 

When an algorithm has been chosen and started it will run in a new thread so 
the program does not block during heavy computation. By doing it this way 
the algorithm tries to find a better and better solution in the background and 
with a click on a button the best solution so far is shown. When clicking the 
refresh button it is important that the algorithm is not in the middle of creating 
a solution which would cause a wrong board to be displayed since it is not 
done computing yet. This can be avoided using a semaphore to control when 
to refresh the solution. A semaphore is a structure that can hold a number of 
tokens. They can be taken and put back. When there are no tokens to take the 
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code will have to wait until it can take one. So by taken a token when a solu-
tion is being created and putting it back when done, and the same for refresh-
ing, the two code parts will never run simultaneously. 

5.1  The puzzle 

The first thing needed is to be able to create a puzzle. A puzzle is an n x m 
board consisting of just as many pieces. A puzzle can be created in many 
ways but in order to guarantee that there is at least one solution the easiest 
way is to create a perfect puzzle and then shuffling the pieces. One way is to 
start from a corner and create a piece. The piece’s colors should be deter-
mined by the total number of colors that has been decided for the puzzle. A 
random color is assigned to each side of the piece. When placing the next 
piece the previously placed adjacent piece decides the color of the adjacent 
side on the new piece. The rest of the sides are again chosen randomly. This is 
done for each piece and at the end of the puzzle creation a complete puzzle is 
returned. If a border is required a simple check to see if a piece about to be 
placed is in the border is performed, and in that case the side not being adja-
cent to any pieces is set to be the border color. 

To prevent that two pieces are exactly the same each of the pieces are com-
pared to each other at the end of the creation. If this is the case the method 
returns null and is called again. The more colors the greater is the chance of 
creating a puzzle where all pieces are unique. 

To create the hardest possible puzzle just from the size of the board the for-
mula in 3.1.4 is used to find out how many colors should be in the border 
pieces and the interior pieces. It is computed how many sides needs to be 
filled for both the border pieces and interior pieces. When this is done the 
colors are distributed as evenly as possible between each other to create the 
hardest puzzle. The colors are then assigned randomly to the board while 
keeping track of how many of each has been placed. The method will end up 
with a perfect board, which should be one of the hardest instances of its size 
with expected to have only one solution. This of cause cannot be guaranteed. 
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5.2 The backtracking algorithm 

The backtracking algorithm works by taking as input an empty board and a 
list of pieces that fit on the first position. This includes rotations of the indi-
vidual piece. For each of the pieces in the list the piece is placed on the board. 
The same method is recursively called again now with the new board and a 
revised piece list where the just placed piece has been removed and all other 
pieces that do not match the placed piece is also removed. This is done either 
until all pieces have been placed, which mean that a complete solution has 
been found, or until the method is called with an empty list of piece which 
means that there were no pieces left that would fit in the position. 

The algorithm has the possibility of returning the first found solution and exit 
or to go through all possible combinations and return all possible solutions to 
the problem. This will of cause be impossible in large instances of a problem. 

5.3 The greedy algorithm 

The greedy algorithm is called with the problem as a parameter. The greedy 
algorithm has been implemented with the possibility to place the pieces col-
umn wise or by random. For the column wise property each position on the 
board is accessed using a double for-loop. For each position the pieces that 
may be placed there, being corner, border or interior piece, is picked out. The 
algorithm determines the sides of the adjacent positions and then finds the 
first occurrence of the pieces that match. If such a piece does not exist the 
next best piece is chosen. This is done for each of the positions until the board 
is filled out with pieces. The algorithm has been made a little custom since it 
shuffles the list of pieces before it is about to place them. This will help get-
ting different instances of the board if it is run multiple times. 

The random piece placement approach works by first selecting a completely 
random position on the board and calls a method that inserts a piece. It then 
randomly moves in one of the four directions by calling the method recursive-
ly. If it is not a valid position that is out of the border or a piece has already 
been placed there it backtracks to a new position. It finds the best matching 
piece by looking at the neighboring positions to see how many colors that 
should match. By tests this approach has proven to create very bad solutions 
and is therefore not implemented in any of the later algorithms. 
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5.4 The local search algorithm 

When starting the local search algorithm the board is run though the greedy 
algorithm once in order to get a somewhat good solution. After that it is time 
to perform the mutations. To decide how many mutations that should be per-
formed an approximation to the Poisson distributed is used. The probability of 
flipping a coin k times showing heads is very close to the Poisson distribution. 
So a random generator just needs to flip a coin as long as it shows heads and 
when it hits tails this the number of times flipped is k. The built in random 
generator in C# has a method called nextDouble which returns a value be-
tween 0.0 and 1.0. This can be used to simulate the coin by making >0.5 
heads and <0.5 tails. 

If the puzzle has a border then the swap mutation may only be allowed for 
pieces in their own region. This means interior pieces can only switch with 
other interior pieces, border pieces only with other border pieces and corner 
pieces only with other corner pieces. And of cause it only makes sense to use 
the rotate mutation on the interior pieces. After the mutations the boards score 
is calculated and if it is better than the previous, then this will become the new 
board. 

5.5 The ACO version 1 

For both versions of the ACO algorithm the essential part of the implementa-
tion is how the edges are created. For version 1 there should be an edge be-
tween every piece, in its four rotated states, to every position on the board. If 
all of these edges should be created at initialization of the algorithm it would 
be an awful lot of edges. Even a small puzzle of 6x6 would create 4 ∙ 6 ∙
6 5184 edges. Since it is only N edges that are used at each ant tour it 
seems pointless to create them all at once. Instead they are created at runtime 
when they are chosen by the decision policy. In order for this to be possible 
there must be a pheromone counter for uncreated edges such that when they 
are created the right amount of pheromone is deposited on them. 

The algorithm can be called to either use the ACS or MMAS, where the dif-
ference simply lies in the different ways the edges should be updated either 
while the ants are travelling the edges or at the end of an ant tour. 
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5.6 The ACO version 2 

Version 2 of the ACO algorithm has a very different structure in the edges. 
Here all sides of each piece should have edges between one another. This will 
create even more edges than in version 1, and is therefore also first created 
when it shall be used. 
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6 Results and evaluation 

In this chapter the results of the developed algorithms will be revealed. A 
number of puzzles of different difficulties is created and run through the algo-
rithms. All the tests have been performed on a Windows Vista 64-bit ma-
chine, Intel Quad Core 2.83GHz with 4 GB ram. 

6.1 The puzzles 

The puzzles tested will range from being so easy solvable so that a backtrack-
ing algorithm can be used to very hard as the Eternity II puzzle. This means 
different board sizes and number of colors. The pieces of the puzzles will all 
be unsigned since the complexity of a signed piece more or less corresponds 
to just having more colors. In Table 2 the puzzles are listed with the attributes 
that differs them from one another. 

Name Board size Num. colors Color distribution Borders 
P1 4x4 4 Random Yes 
P2 4x4 6 Even Yes 
P3 4x4 8 Random Yes 
P4 6x6 4 Random Yes 
P5 6x6 9 Even Yes 
P6 6x6 12 Random Yes 
P7 10x10 10 Random Yes 
P8 10x10 10 Random No 
P9 10x10 14 Even Yes 
P10 16x16 23 Random No 
P11 16x16 23 Even Yes 
EII 16x16 22 Even Yes 
P0 12x12 50 Random Yes 

Table 2 – Selected puzzles 
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6.2 The backtracking algorithm 

To test the formula from 3.1.4, claiming that there is only one expected solu-
tion if a puzzle is created with the number of colors given by the size of the 
board, P1-P6 is made small enough for the backtracking algorithm to find all 
the solutions. P2 and P5 are the problems that are expected to have only one 
solution where P1 and P4 with fewer colors than the optimal should create 
more solutions. P3 and P6 should also create either one or few solutions but 
these should be easier to find because of the less combinations the pieces have 
to match to each other. 

For the problems P1-P3 the solutions where all found very fast. P1 had four 
unique solutions. P2 and P3 only had one solution each. The boards P1-P3 are 
a little too small to conclude anything on the results since the solutions were 
found so very fast. With P4-P6 better conclusions can be made. With P4 it 
was very easy to find one solution, but when trying to find all solutions, it 
took a very long time. After 10 minutes the algorithm was manually stopped 
and at that moment more than 1500 unique solutions were found. With P5 it 
took a couple of seconds to find the first solution. It took 15 minutes to find 
the total of three unique solutions. P6 only had one unique solution and it was 
found immediately. These results are very close to the expected since a lot of 
solutions were found to P4, only one solution to P6 and P5 was hard to solve.  

This concludes that the formula from 3.1.4 does create hard problem and even 
though there may be more than one solution, they are by far the hardest to 
find. 

P0 has been created to show how easy it is for the backtracking algorithm to 
find the solutions to a problem that has too many colors compared to the 
board size. Even though the board is 12x12 it only takes the algorithm a few 
seconds to locate all solutions which are four, and by that only one unique 
since the board can be rotated itself. 
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The greedy algorithm 

Since the greedy algorithm shuffles the pieces before each run it is only ne-
cessary to run it once on each problem and stop it after a certain period of 
time when no improvements are found. The greedy algorithm is implemented 
to place the pieces both in the regular way by placing them column wise and 
by placing them going out from a random point. By placing the pieces using 
the random point approach the maximum number of matching pieces for P7 is 
141/180 and no improvements are found after 15 minutes. The regular way to 
place the pieces gives much better results of 155/180 in the same amount of 
time. P8 has no border and thus gives much better results. With the regular 
piece placement the number of matching pieces is 170/180 and the random 
piece placement gives 161/180. All results of P7-P11 and EII can be seen in 
Table 3. 

Problem Regular piece placement Random piece placement 
P7 155/180 141/180 
P8 170/180 161/180 
P9 161/180 145/180 
P10 405/480 367/480 
P11 400/480 363/480 
EII 408/480 369/480 

Table 3 – Results of greedy algorithm 

From this table it can clearly be seen that the random piece placement is not 
that effective as first expected. 
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6.3 The local search algorithm 

 

The local search algorithm is run ten times for each problem, and stopped 
when no improvements has been found in a while. The average result and the 
best result can be seen in Table 4 – Results of local search algorithmTable 4. 

Problem Average score Best score 
P7 142,4/180 146/180 
P8 156,7/180 159/180 
P9 145,8/180 149/180 
P10 370,4/480 380/480 
P11 373,9/480 386/480 
EII 384,3/480 388/480 

Table 4 – Results of local search algorithm 

The results of the ten runs can be somewhat far from each other. This is due to 
the fact that the local search sometimes reaches a local optimum fast and from 
here it is not able to create better solutions. 

6.4 The ACO algorithm version 1 

A lot of parameters can be set on the ACO algorithm and it is very hard to 
determine what the best settings to get the best result are. The influence of the 
desirability and the heuristics can be set by the  and  values and the precise 
ratio between them is hard to find, and it does not get easier that the number 
of ants also is variable. A lot of permutations of the three parameters can be 
made and for P7 this has been tried out to find a good combination. All the 
different permutations have been run three times where each approximately 
makes 1500 computations per ant. The average result is noted. 

ACO type Number of ants   Result 
MMAS 2 1 1 75/180 
MMAS 5 1 1 76.66/180 
MMAS 2 2 1 48.33/180 
MMAS 5 2 1 59.33/180 
MMAS 2 1 2 85.33/180 
MMAS 5 1 2 91.66/180 
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ACS 2 1 1 94.33/180 
ACS 5 1 1 95/180 
ACS 2 2 1 86.66/180 
ACS 5 2 1 86.66/180 
ACS 2 1 2 95.66/180 
ACS 5 1 2 106/180 

Table 5 – Finding optimal values ACO version 1 

If the  value gets much larger than the  value the algorithm leans more 
against a greedy algorithm and thus reveals results looking more like the ones 
from 0. This is not the intended behavior because we really want more infor-
mation gained from the pheromone values. Increasing both of the influence 
values does not really give better results since the probability of choosing 
edges is more or less the same as if both values were decreased. But in general 
a little higher influence of the heuristic value has shown to create better re-
sults. 

It can be seen that the number of ants has an influence on the result. The only 
problem with a high number of ants is that it takes very long time to create a 
single solution. Five ants is a good choice, not being too low and not taking 
too long time to create solutions. It can also be seen that ACS produces far 
better solutions than MMAS. The rest of the problems will therefore use the 
optimal settings which are ACS with 5 ants,  being one and  being two. 

Problem Average score Best score 
P8 115/180 118/180 
P9 104/180 109/180 
P10 241/480 244/480 
P11 239/480 241/480 
EII 248/480 252/480 

Table 6 – ACO version 1 results 

These results have shown to be not as good as the neither the greedy algo-
rithm nor the local search, but I believe that with even more tweaking of some 
of the inner parameters, such as how much pheromone should be added to the 
edges and exactly what the heuristic function should return, the algorithm will 
be able to return acceptable results. These values have of cause also been ex-
perimented with but at the moment the algorithm was created they were found 
to work best. For the 10x10 boards it seems at the moment that a maximum 
value is reached at some time which indicates that a wrong solution has been 
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given too much desirability so that it gets chosen again and again. For the 
larger boards of 16x16 the computation takes way to long time for the algo-
rithm to reach a good solution. There is a huge amount of edges that must be 
evaluated and this is simple not very time effective. So with more patience the 
16x16 board might create a few more solutions. 

6.5 The ACO algorithm version 2 

The same procedure as with the first version of the algorithm has been used to 
locate the best values of the parameters to see if there might be a difference in 
the optimal choices. This is again performed on P7. 

ACO type Number of ants   Result 
MMAS 2 1 1 49/180 
MMAS 5 1 1 69.33/180 
MMAS 2 2 1 42/180 
MMAS 5 2 1 45.33/180 
MMAS 2 1 2 61/180 
MMAS 5 1 2 62.33/180 
     
ACS 2 1 1 93/180 
ACS 5 1 1 94.66/180 
ACS 2 2 1 87/180 
ACS 5 2 1 95/180 
ACS 2 1 2 98/180 
ACS 5 1 2 110.33/180 

Table 7 – Finding optimal values ACO version 1 

The same trends as with the first version of the algorithm can be seen. The 
results with MMAS are more or less equal to the ones from the first version 
but around 10 lower. This is actually a little disappointing since I thought that 
this version would perform better than the first. Then again it actually it does 
perform better but only with ACS. Especially it seems that the pheromone 
value has more influence on the result than in version 1.  
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Here we saw that the algorithm gave pretty good results with ACS but are still 
best, as in version 1, with 5 ants,  being one and  being two. 

Problem Average score Best score 
P8 106/180 111/180 
P9 106/180 109/180 
P10 237/480 240/480 
P11 237/480 242/480 
EII 243/480 246/480 

Table 8 – ACO version 2 results 

The results of version 2 seem to be a little better but then again, when working 
with the large board of 16x16, the algorithm has too much to calculate. Ver-
sion 2 has much more edges to work with than version 1 so good results re-
quires long computation time. 
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7 Conclusion 

The thesis was about designing an algorithm for the edge matching puzzle 
problem using ant colony optimization algorithms. The means was to analyze 
the edge matching problem and then come up with a suggestion for an ACO 
algorithm. 

By analyzing the structure of edge matching puzzles I have found the proper-
ties that makes one problem harder than another. It is not just the obvious 
claim that the bigger a board gets the harder it is. This is not the case since 
very easy problem can be created with large board and either very few or very 
many colors. I have found the real source of a puzzles hardness which is a 
combination of the board size along with a specific number of colors. A bor-
der on the puzzle increases the hardness even more and with unique pieces the 
hardness maximizes. 

By creating simple solvers for the problem I got an idea of how good solu-
tions I could expect to find with the final algorithm. This also gave a good 
idea of how an algorithm is used to solve specific problems. When using an 
existing solving technology a lot of adjustments have to be made for each 
different problem that it is intended to solve.  

The results of my ACO algorithms for the edge matching puzzles are unfortu-
nately not very efficient compared to the known solvers. The main problem 
lies in the fact that both variants creates way too many edges for the algorithm 
to work efficiently. With more patience the larger algorithms might return 
better results. It seemed like the smaller problems at one point got into a local 
optimum and could not reach better results. This might could have been 
avoided if I had given more focus to some of the variables of the ACO algo-
rithms. The pheromone value, which is added by the best ant, is simply the 
score of the problem which at first seemed like a good choice. The research 
could have gone more into determine this value which might have gotten dif-
ferent results. Instead of just using the score one could have drawn other as-
pects into this value. This applies for a lot of the variables that can be set for 
ACO algorithms. 
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Even though I did not get especially good solutions I think that it will be poss-
ible to find good results with ACO algorithms. One should avoid the massive 
number of edges that I had with my algorithms. On the other hand I think it is 
hard to imagine an ACO algorithm for the edge matching puzzle which does 
not require a whole lot of edges. If you somehow omit the rotation for the 
pieces you get four times as few edges which would help a lot working with 
the board sizes I have worked with. Then another method must be used to 
handle the rotation of the pieces. 

I think the edge matching puzzle has been very interesting to work with, espe-
cially the analysis of the hardness. It has also been interesting to create and 
implement a working ACO algorithm and see how the nuts and bolts of it 
work. 
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